
JOURNAL OF COMPUTATIONAL PHYSICS 37, 355-370 (1980) 

A Geodesic Finite-Difference Method for Curved Domains: 
Simulations of Tidal Motion on a Sphere 

W. C. THACKER 

Sea-Air Interaction Laboratory, Atlantic Oceanographic and Meteorological Laboratories 
National Oceanic and Atmospheric Administration, Miami, Florida 33149 

Received July 2, 1979; revised November 13, 1979 

This finite-difference method for approximating the solutions of partial-differential equa- 
tions on curved surfaces has two attractive features, First, it offers considerable flexibility in 
the design of the computational mesh, allowing points to be distributed as desired throughout 
the curved domain, either uniformly or to achieve variable resolution. Second, the use of three- 
dimensional Cartesian coordinates rather than two-dimensional curvilinear surface coor- 
dinates facilitates computations on geometrically irregular surfaces. Computational tests 
demonstrate that the method can accurately reproduce time-dependent solutions Of Laplace’s 
tidal equations on a sphere, using a large time-step and a quasi-homogeneous grid without any 
need for filtering or smoothing. This method should be ideally suited for computing oceanic 
circulation or global-scale weather. 

I. INTRODUCTION 

The method for solving partial-differential equations on curved surfaces which is 
presented here is a straightforward generalization of a method for flat surfaces that 
was developed for numerically forecasting storm surges [lo]. The characteristic 
feature of this method is that it allows the use of an irregular computational mesh. 
For storm surge calculations, boundary points can coincide with the curving 
coastlines of bays and barrier islands, and interior points can be spaced more closely 
in shallow regions and further apart in deep regions in order to avoid unnecessary 
computational expense while restricting numerical dispersion to a uniform level over 
the entire basin [ 121. For time-dependent problems such as storm surge forecasting, 
this method is computationally more economical than finite-element methods, which 
also can be used with irregular computational grids [ 1 I]. 

A problem similar to that of forecasting surges is the prediction of tides for the 
world oceans. Again, the computational mesh should be tailored to the bathymetry of 
the oceans, and its boundaries to the shapes of the continents. However, on the global 
scale, it is necessary to take into account the spherical shape of the earth. This can be 
done by constraining the grid points to lie on the curved surface of a sphere. As long 
as the points are closely enough spaced so that the grid appears to be locally flat 
everywhere, with little modification the finite-difference formulas for irregular planar 
grids should also provide useful approximations to partial derivatives on curved grids. 
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Grid design can also be important for computing the general circulation of the 
atmosphere. The traditional approach has been to cast the equations in spherical 
polar coordinates and to approximate their solutions on a computational mesh 
formed by the intersection of parallels of latitude with longitudinal meridians. The 
expense of the unneeded resolution provided by the small grid intervals near the poles 
is compounded by the fact that the smallest interval sets the limit for the maximum 
size of a stable explicit time-step. This fact has motivated the use of computational 
grids which are quasi-uniform over the entire globe. Kurihara [3] introduced a grid 
for which points were situated on circles of constant latitude but with the number of 
points per circle decreasing linearly with increasing latitude. Williamson ] 15 ] and 
Sadourny et al. [9] broke completely with the tradition of restricting points to 
meridians and parallels by using geodesic grids which are formed by subdividing the 
faces of icosohedra into smaller triangles and then mapping those triangles onto the 
surface of a concentric sphere. The approach taken by Williamson [ 161 to integrate 
the barotropic primitive equations on such a geodesic grid is quite similar to that 
presented here, the difference being primarily in the formulas used for approximating 
partial derivatives. Although he found that an unexpectedly small time-step was 
needed to avoid computational instability, the method presented here has the 
attractive feature of allowing for an unusually large explicit time-step. Another 
approach to the problem of uniform resolution over the sphere is to project the 
surface of the sphere onto the faces of a concentric cube, or other regular polyhedron, 
and to use a separate coordinate system and uniform grid for each face. Sadourny [g) 
found that the internal boundaries corresponding to the edges of the cube were the 
source of two-grid interval waves which had to be removed by a damping operator. 
Williamson [ 161 found that his scheme also required smoothing to remove numerical 
noise, as did Cullen [l] for his finite-element integrations of the barotropic primitive 
equations using a similar icosohedral grid. The method presented here yielded good 
results without resorting to any filtering technique. 

The finite-difference method presented here can be used to solve partial-differential 
equations on irregularly curved surfaces and is not at all limited to the special case of 
a spherical domain. For example, it could be used to calculate the conduction of heat 
through a twisted sheet of metal. A curvilinear coordinate system for the curved 
surface is not required, because three-dimensional Cartesian coordinates can be used 
to specify the location of points on the curved computational mesh and the surface 
gradient vector can be resolved into Cartesian components. Although the gradient 
vector must be parallel to the surface, there is no need to know how to project its 
components onto directions corresponding to surface coordinates. What is important 
is to be able to specify the direction of the surface normal at each grid point. An 
appropriate normal vector, defined in terms of cross products of the position vectors 
of neighboring grid points, is incorporated into the finite-difference formula in order 
to guarantee that the gradient vector is indeed parallel to the curved domain. 

In order to demonstrate that this method does provide good approximations to the 
solutions of partial-differential equations, it is necessary to be able to compare the 
results of computations to known exact solutions. Such solutions are generally 
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unknown for irregular surfaces. However, Laplace’s tidal equations on a sphere, 
which contain the essential physics of large-scale oceanic and atmospheric 
circulation, have closed-form solutions corresponding to normal mode oscillations. 
The numerical simulation of these oscillations provides an excellent test of this 
method within an important practical context. Because the computations are made 
entirely without reference to spherical coordinates, it seems fair to conclude that this 
method should work equally well on non-spherical surfaces. 

II. APPROXIMATION OF PARTIAL DERIVATIVES 

Formulas for approximating partial derivatives on irregular planar grids were first 
obtained by Noh [ 61. He constructed the formulas so that Green’s theorem relating 
line integrals to surface integrals would be satisfied, guaranteeing that appropriate 
quantities would be conserved by his finite-difference equations. Later they were also 
derived by approximating the partial derivatives of a function by the slopes of 
triangular facets that comprise a piecewise-linear approximation to the function [ IO]. 
These formulas can be written quite simply as a single vector equation, 

(1) 

The subscripts indicate that the value of the derivative is approximated at the jth grid 
point in terms of the values of the function at N neighboring grid points with indices i 
increasing, modulo N, in a counterclockwise direction about j. The three-dimensional 
vectors ri are the position vectors of the grid points and the unit vector fii is normal 
to the plane of the computational grid. For a planar grid, the subscript on the unit 
vector is superfluous. The magnitude of the denominator is twice the area of the 
polygon formed by connecting consecutive neighboring points. The overbar is used to 
distinguish this finite-difference form from the value of the derivative that it approx- 
imates. 

Although (Vf)j is a three-dimensional vector, (vf)/ tii= 0, so its components are 
parallel to the plane of the computational grid. Thus, it has only two independent 
components, corresponding to the two partial derivatives of a function of two 
variables. Equation (1) simply allows those two variables to define a plane having an 
arbitrary orientation with respect to a three-dimensional Cartesian coordinate system. 
If this plane is thought of as being tangent to a curved surface at r,i, then in that 
vicinity the finite-difference form should provide a good approximation to the 
derivatives on the curved surface, so long as both the function and the curved domain 
vary slowly on the scale set by the separation of the grid points. This suggests that 
Eq. (1) can also be used to approximate derivatives on curved surfaces, if tij is un- 
derstood to be the normal to the surface at ri. 

Fdr a spherical surface, the direction of the normal at any point can be determined 
from the values of the spherical polar coordinates of that point. However, a 
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corresponding system of surface coordinates is not readily available for a general, 
irregularly curved surface, so it is convenient to be able to define the normal direction 
without reference to curvilinear surface coordinates. If the grid points are thought of 
as being the vertices of triangular facets of a piecewise-linear geodesic surface that 
approximates the curved computational domain, then it is clear that ?Zi can be approx- 
imated as an average of the unit normal vectors of the facets surrounding ri. The vec- 
torAii=(ri-ti)x(ri+,- r,i) is normal to the facet with vertices ri, ri+ ,, and rj, so 
the vector Aj = ry=, A, is in the direction of the area-weighted average of the unit 
normals of the facets surrounding cl. The vector, Ai, is a simple function of the posi- 
tion vectors of the neighboring points, 

A-j= i riX ri+l, 
i=l 

and the unit normal vector is simply 

(3) 

It is interesting to note that the magnitude of Aj equals twice the sum of the areas of 
the facets surrounding rj only if the grid is planar; for curved grids, it is less. 

Equations (l), (2), and (3) can be combined to give a finite-difference formula for 
use with non-planar grids, 

(vf)j= $) aijf;9 
i=l (4) 

Uij=(ri+I-ri-1)X i-+i . 
( ) 3 J 

The coefficients aij (relating the value of the derivative at j to the value of the 
function at i) are generalizations of the familiar factors, k(2dx)-‘, for a one- 
dimensional linear grid of points Ax apart. 

The differentiation coefficients are not independent; the sum of the coefficients of 
the neighboring points must vanish, and if the number of neighbors is even, the sums 
of coefficients of alternate points must separately vanish. This allows computationally 
more efficient formulas to be written, 

N-1 

Ff)j = C aijffi -f,>, 
i= I 

for N odd, 

N 3 N-2 

W)j= 2: aij(fi -fan- I> + C aijC.6 -fvh for N even. (5) . 
ix1 i=2 
odd even 
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For an odd number of neighbors, N- 1 coefficients must be calculated, and for an 
even number, N- 2. If the computations are referenced to a system of coordinates 
within the curved surface, only two components of the coefficients are needed. All 
three components were used for the examples presented here in order to demonstrate 
that a system of surface coordinates is unnecessary. The coefficients were computed 
once and tabulated. Since the computational grid was constructed so that all points 
had either five or six neighbors, four multiplications, four subtractions, and three ad- 
ditions were required to compute the partial derivative in each direction for each grid 
point. 

The examples considered here involve equations with only first derivatives, but this 
is not a restriction. Higher derivatives can be computed simply by repeated applica- 
tion of the finite-difference formulas (5). 

III. THE COMPUTATIONAL MESH 

The formulas for approximating partial derivatives offer the freedom to design the 
grid to suit the computation for which it is intended. Although in general there may 
be a problem in recognizing a priori an advantageous distribution of mesh points, this 
is not the case for computations based upon Laplace’s tidal equations on a sphere. If 
the sphere does not rotate and the depth of the undisturbed fluid is the same 
everywhere, then the spherical symmetry of the equations indicates that the variability 
of the solutions should be uniform over the sphere and therefore, that a uniform com- 
putational mesh should be appropriate. However, if the sphere does rotate, that sym- 
metry is destroyed and resolution which varies in the direction of the axis of rotation 
might be more appropriate. Indeed, Longuet-Higgins [5] points out that, as the rate 
of rotation gets very large, the variability of free oscillations is concentrated near the 
equator, implying that the grid spacing should increase from the poles toward the 
equator, in the opposite sense to what is available using a grid formed by the intersec- 
tions of meridians with parallels; on the other hand, the “negative-depth” solutions, 
which are important for forced motion, are most variable near the poles. The fact that 
the length of a wave is diminished as it propagates into shallow water indicates that, 
when the depth is not uniform, the mesh should be denser for the shallow region than 
for the deep regions. The spacing should be proportional to the phase speed (or to the 
square root of the depth), if the number of grid points per wavelength is to be the 
same everywhere. The closed-form solutions which provide tests of the tinite- 
difference method correspond to the case of uniform depth and moderate rotation, so 
a homogeneous mesh is appropriate for the test computations. 

Experience with planar grids [ 10, 111 has shown that computational accuracy can 
be diminished if the grid is not constructed so that each point is at the center of the 
polygon formed by its closest neighbors. If neighboring points are thought of as being 
connected by springs, then the equilibrium configuration of the spring system corres- 
ponds to a centered grid [ 131. For points constrained to lie on the surface of a sphere 
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of radius R, the position of each grid point is related to the positions of its neighbors 
through a system of simultaneous non-linear equations, 

(6) 

Before Eqs. (6) can be solved to determine the location of the grid points, it is 
necessary to know which points should be neighbors. In order to achieve a quasi- 
uniform distribution of points over the sphere, the neighbors were specified so that the 
mesh would be topologically equivalent to one obtained by subdividing each face of a 
regular icosohedron into n2 equilateral triangles. Equations (6) were solved using an 
iterative technique of the Gauss-Seidel type, for the location of all the points except 
those corresponding to the vertices of the icosohedron. These were held fixed in order 
to avoid unwanted solutions such as the one for which all points are located at the 
same spot. The iterations were initialized by placing the points along 3n - 1 
latitudinal circles in order to achieve a fairly homogeneous approximation to the final 
grid. 

Although this grid is topologically equivalent to the grids used by Sadourny et al. 
191, Cullen [ 11, Hinsman [2], and Platzman [7], the details of the grid geometry are 
different. For example, the maximum, average, and minimum angular separations of 
neighboring grid points as given by Platzman [7] for the configuration specified by 
n = 10 are, respectively, 7.72, 6.92, and 6.34 degrees. The corresponding values for 
the topologically equivalent centered grid are 7.26, 6.87, and 4.75. The requirement 

TABLE 1 

Features of Centered Quasi-Uniform Spherical Grids 

ll=5 n= 10 ?I= 15 

Number of points 252 1002 2252 

Maximum distance between 
neighboring points /2nR 0.0402 0.0202 0.0135 

Average distance between 
neighboring points /2nR 

Minimum distance between 
neighboring points /2nR 

0.038 1 0.0191 0.0127 

0.0302 0.0132 0.0081 

Sum of areas of triangular 
facets /4nR2 0.9878 0.9969 0.9986 

Maximum angle between 
computational normal and 
true normal in radians 0.0191 0.0092 0.003 1 

- 
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FIG. I. The mesh used for test computations is shown as viewed from a distant point (a) along the 
.u-axis and (b) along the z-axis. 

that the points be centered causes the grid spacing to be smaller in the vicinity of the 
12 points which correspond to the corners of the icosohedron than they would be us- 
ing the other methods of grid construction. Properties of centered grids are listed in 
Table I for n = 5, 10, and 15. Test computations were made with the grid illustrated 
in Fig. 1, corresponding to n = 10 and having 1002 points. 

IV. FINITE-DIFFERENCE SIMULATIONS OF TIDAL OSCILLATIONS 

The free motion of a thin layer of fluid held by gravity to a rotating sphere is 
governed by Laplace’s tidal equations, 

Z+(f. ti)n^X”+gDVH=O, 
(7) 

++v.u=o. 
which express the conservation of momentum and mass of the fluid. The variables, U 
and H, are the vertical integral of the horizontal velocity and the surface elevation of 
the fluid, respectively; and the parameters f, g, and D, are respectively the Coriolis 
vector (equal to twice the angular velocity of the sphere), the acceleration of gravity, 
and the depth of the fluid. Note that only the component of the Coriolis vector per- 
pendicular to the surface contributes to the Coriolis force term because U is parallel 
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to the surface of the sphere. Likewise, the gradient operator, V, is parallel to the sur- 
face. 

The finite-difference analogues of these equations are 

f (UJ’ ‘/2 - u,;- “2) + f (f . djyj x (q-t 1/Z + u;-“2) + gD(VH)Y = 0, 
(8) 

~(H;+l--H:)+(V-U)1+1:*=0. 

The variables, Uy-“’ and Hi”, provide approximations to U and H at the grid points, 
xj, and time levels, t = (n - f)r and t = m, respectively. The leap-frog time structure 
allows the variables at each time level to be evaluated explicitly from known values 
from previous time levels. Spatial derivatives are approximated according to Eqs. (5), 
and unit normals according to Eq. (3). 

Computations with the grid shown in Fig. 1 were found to be stable for 7 < 2.1659 
A(gD)-“2, where t is the size of the time-step and A is the smallest distance between 
neighboring grid points. This is greater than the limit for a planar grid of equilateral 
triangles, t < 1.7044 A( gD)-“* [ 111. Since a corresponding leapfrog scheme with 
centered differences on a planar rectangular grid requires 7 Q 1.4142 A(gD)-I’*, the 
size of the time-step used here can be considered to be quite large. It is interesting to 
note that, for a planar grid, the leap-frog finite-difference scheme with averaged 
Coriolis term is computationally neutral, so long as the size of the time-step is less 
than the stability limit; there is no numerical damping. 

The smallest grid intervals are those associated with the points which correspond 

a 

FIG. 2. Contours of constant surface elevation indicate that, for a time-step exceeding the stability 
limit by only 3 So, energy is radiated from the regions corresponding to the smallest grid spacing. The 
views (a) and (b) in this and the following figures are the same as defined for Fig. 1. 
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to the corners of the icosohedron and which have only five neighbors. Fig. 2 il- 
lustrates that a time-step about 3 % larger than the stability limit causes these points 
to radiate energy, which confirms the notion that the stability limit is set by the 
smallest grid interval. 

Equations (8) were used to simulate five different normal-mode oscillations, three 
without rotation (f = 0) and two with rotation about the z-axis (f =fi). Exact solu- 
tions were used to provide initial values for U,: I’* and @ at grid points, xl. The 
results presented below correspond to r = 2.1659 d(gD))“’ = 0.18 II(gD and 
to the orientation of the grid as shown in Fig. 1. Additional computations indicated 
that the orientation of the grid is unimportant. 

Case 1. For f = 0, normal-mode solutions for surface elevations are the familiar 
spherical harmonic functions [4]. The first example is the mode with lowest 
frequency, o = (2gD)“‘/R, that is azimuthly symmetric about the z-axis with 
latitudinal variation corresponding to the associated Legendre polynomial, Py(z/R), 

H=HO f coswt, 
( ) 

U=H, (g)(s) sinwt, 

Y=HO (g)(s) sinwt, 

W=-H,, (g)(v) sinwt, 

(9) 

where U, V, and W are the x-, y-, and z-components of U, respectively, and where the 
constant, HO, determines the amplitude of the oscillation. The contours of constant 
surface elevation after 100 cycles of simulation, which are shown in Fig. 3, indicate 
excellent agreement with the exact solution. 

Case 2. The second example, also with f= 0 corresponds to a zonally 
propagating wave with frequency, w = (6gD)“2/R, with latitudinal variation 
corresponding to the associated Legendre polynomial, P:(z/R), 

(10) 

H=H, + 
( I( 

$-coswt+$-sinwt , 
1 

U=-HO($)(%)($coswt+ R2iF2 sinmt), 

V=HO($;j(+j(R2;i2Y’ coswt-+inwtj, 

W=H, (g)( Rz~~z2)($/coswt-$sinwt). 
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a b 

FIG. 3. Case 1, f=O, w = (2gD)‘l*/R. The equally spaced contours of constant surface elevation 
show that the shape of this standing wave is preserved after 100 cycles of simulation. 

a b 

FIG. 4. Case 2, f= 0, w = (6gD)“*/R. After 150 cycles this traveling wave has maintained its 
shape. 
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Again, surface elevation contours after 150 cycles (Fig. 4) indicate excellent agree- 
ment with the exact solution. 

Case 3. A zonally symmetric solution can also be found for the special case, 
o =f = z(gD)‘12/2R, 

H = HO sin 5 cos wt, 

U = -HO( go)“’ cos E fi coswt-- 
(11) 

V=H,,(gD)112cos~(& cos WC + ~ 

W = -H,,( gD)1’2 cos E sin wt. 

This solution corresponds to Solberg’s K, zonal oscillations [ 141. Although the con- 
tours of surface elevation after 100 cycles of simulation (Fig. 5) deviate from 
parallels of latitude due to truncation error, the solutions are quite good. 

a b 

FIG. 5. Case 3, S= w = n( gD)“*/2R. The deviations of surface elevation from azimuthal symmetry 
about the z-axis indicate the presence of truncation errors which have accumulated after 100 cycles of 
simulation (50 revolutions of the sphere about its axis). 
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a 

FIG. 6. Case 4, f= (gD)“‘/R, w = 0. Again, departure from symmetry is an indication of trunca- 
tion errors due to small differences of the discrete normal modes from their exact counterparts. These 
contours correspond to the shape of the surface after approximately 36 revolutions of the sphere. 

Case 4. If the motion is steady, o = 0, azimuthly symmetric solutions can be 
found. This one corresponds to the case of a rigid rotation, 

U=-2H 

V=2H 

(12) 

w=o. 

This solution corresponds to geostrophic flow. (The constant, 8zH,/3, can be sub- 
tracted from H so that the global mean of H is zero.) Contours of surface elevation 
after 2500 time-steps for the case f= (gD)“‘/R (Fig. 6) also show the presence of 
truncation errors through their deviations from latitudinal parallels. When the com- 
putations were repeated for other values ofJ; the pattern of truncation errors was dif- 
ferent, but in every case the dominant part of the solution was quite good. 

Case 5. It is interesting to ask how well this computational method works for 
modes with spatial structure that is barely resolvable by the computational grid, For 
example consider the f = 0 mode with latitudinal variation corresponding to P:(z/R), 
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H=H, 
x4 - 1oxzy2 + 5y” x 5x4 - 10x2y2 + y4 

R4 RCoSuf+ R4 

367 

Ysinot , 
R I 

_ x4 - 10x2y2 + 5y4 

( 

x 
R4 ) Fsinwfj. 

This is a zonally propagating wave with frequency, w = (30gD)“*/R, which has 5 
meridional maxima and minima and 10 meridional nodes. Fig. 7 gives surface eleva- 
tion contours at t = 0 and shows that the nodal lines are poorly resolved in the 
vicinity of the poles, which is due to the fact that the polar grid points have only five 
nearest neighbors. However, the amplitude of this normal mode diminishes rapidly 

a b 

FIG. 7. Case 5, f = 0, w = (3OgD)“‘/R. Contours of the initial surface elevation field indicate that 
the grid cannot represent the 10 meridional nodal lines in the vicinity of the poles. 
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a b 

FIG. 8. Case 5. The shape of the normal mode is fairly well preserved after 250 cycles of simula- 
tion. 

toward the poles, so the poor resolution of the nodal lines in the polar region should 
not be expected to cause numerical difftculties. Indeed, the result of simulating 250 
cycles of oscillation (Fig. 8) is that the mode shape is preserved remarkably well. 

Another way to assess the accuracy of the computations is to compare the fre- 
quency of the computed oscillations with the frequency of the corresponding exact 
solutions. The computational frequency can be defined as o, = 27rP/nr, where n is the 
number of steps of length, T, required to simulate P periods of the oscillations. The 
computational and exact frequencies, which are compared in Table II, show excellent 
agreement. 

TABLE II 

Comparison of Computed and Exact Frequencies for r = 0.18 R/(gD)“’ 

Case 

Number of periods 
simulated 

1 2 3 5 

100 150 100 250 

Number of time-steps 
required 2411 2143 2226 1619 

Computed frequency. 
w,R/(gD)“2 1.4127 2.4433 1.5681 5.3901 

Exact frequency, 
wR/( gD)“* 1.4142 2.4494 1.5708 5.4172 
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V. CONCLUSIONS 

The computational tests clearly demonstrate that this geodesic finite-difference 
method is a practical way to approximate the solutions of partial-differential equa- 
tions on curved domains. Even though the tests involved a spherical domain, the 
method is applicable to any irregularly curved domain. This is due to the fact that the 
finite-difference formulas involve three-dimensional Cartesian coordinates rather than 
two-dimensional curvilinear surface coordinates. 

An important feature of this method is that it allows the grid to be tailored to the 
problem for which it is to be used. The only constraints on the grid are that the 
points should be distributed densely enough to resolve both the curvature of the 
computational domain and the curvature of the unknown function and that each point 
should be centered with respect to its neighbors. This feature can be useful for 
problems of oceanic circulation, since the grid points can be distributed on a 
spherical surface according to the bathymetry of the ocean basin with boundary 
points providing a smooth representation of continental coastlines. The construction 
of such a grid should not be difficult, because the scheme for automatically 
generating storm surge grids [13] can be adapted to provide grids for curved 
domains. 

Laplace’s tidal equations, which were used here to test the computational method, 
contain the essential linear dynamics of global atmospheric circulation. This suggests 
that this method might be particularly useful for predicting weather on a global scale. 
The advantages of a large explicit time-step and a quasi-uniform computational mesh 
should allow it to be economically competitive with other finite-difference methods, 
with finite-element methods, and with spectral methods based upon expansions in 
spherical harmonic functions. Comparison of the computational efficiency of this 
method with that of other methods, in particular for cases in which the non-linear ad- 
vective terms are important, are to be the subject of a future paper. 
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